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RUMMARY

The Thruster Attitude Control Syatem (TACS) had a udable tatal impulae
capability at propellant leading of 376,996 N=pac (84,752 lbf-aae),
During the Skylab. misalon, 340,311 N=ace (76,505 lbf-see) we: expendad
or approximatoly 133,447 N-sec (30,000 ibf=poc) more than tha “worst cano
promlssion prediection, Tha abnormally heavy impulac domands voquired ef
the TACS woro peimarily attributablo to probloms ancountered during the
sarly phascs of the misslon with the motooroid shicld, later problems

with the rate gyroscopes, thie Contw¥ol Momont Gyroscope (CMG) numbor ono
tailure, and finally witlh incroased mancuvoring raquiremonts resulting

from.the Comet Kohoutok.cxparlmontd,

The performance of thc TACS met or oxceeded flight design requirements.
There was no indication of a propellant leak, and no hardware anomalies
ware detected throughout the 9-month f£light,

e e e e — e etk r i nia e o a2
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1, INTRODUCTION

The Thruster Attitude Control System (TACS8) is a cold gas (Np)
propulsion aystem designed to provide attitude control.ef tho Skylab
Cluster during launch vehiclo soparation, Command and Service Module (CsM)
docking, and for mancuvering tho vohielo during certain exporiments such as
the Earth Rosources Exporiment Packago (EREP) and Comot Kohioutak viewing
periods. Tho system eporatos in a blowdown moedac with tho thrust varying
from 444.8 N (L00 1bf) to 44,5 N—(L0 1b{) ovar the operating_preasuta
rangd,

This report details the preflight activitics and the mission support
affort. The mission suppert and evaluation efforts are given the primary
emphasis, Section 2, contains a description of the TACS and documents
the problem areas and their solutions during the development test program,
qualification test program, and flight checkout tasting, The mission support
affort is documented in Section 3, Section 4, contains the detailed flight
avaluation of the TACS utilizing real-tima flight data,
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2, THRUSTER ATTITUDE CONTROL 8YSTEM. DESCRIPTTON_AND PREMISSION AGTIVITY

A dedcription of the TACS with devailed information on eacl component
is presented in this sectlon This descript.on is da.igned to acquaint
the roader with tho capabilitics and oporational eharacteristics of tha
syetam. Tha proflight. tost and chockout higtory is prascmted for the- TACS
dovolopmunt, qualification, and chockout tost programs.

2,1 SYSTEM DESCRIPTION

A schamatic representation of the TACS is presented in Figure l. The
location of the system on the Skylab spacecraft and the mounting of key
components are shown in Eigures 2, 3, and 4, The datalled opera:ing
characteristics of cacli component described below are presented .
Appendix A,

Thers are 24 propellant control valvee (Figv'¢ 3) in -~ system,
four per thruster manifolded togethaer te yro.iuw see bes=paratlel redundency.
The solenoid actuated, preumatically-opuected valve contains a small pilot
poppet integral and coaxial with the ma.n poppet. The pilot poppet controls
pressure forces that.opeh the main poppet. The-pilot poppet and main poppet
are linked mechanically s6 that energizing the gsolenoid coil opens the
valve against the springs at low supply pressures. When the solenoid is

daener-izaed, both poppets are pressure-unbalanced closed to emeure leak-
tight sealing.

The six thruster nozzles (Eigure 6) have 50:1 expansion ratios and
belleshaped expansion contours, These features were selected to maximize
specific impulse while confining the exhaust plume to minimize inpingement
on the vehic.e aft skirt, An impingement ghield is provided to eliminate
unbalanced forces on the vehicle caused by plume impingement on aft skirt
structural elements,

The 22 N, supply storage sphieres (Figure 7) in the system are of the
game design as those used in the S-IVB ambient He repressurization system,
They are constructed of welded titanium hemitheres, and are qualified
for operating pressures up to 2,206 x 107 N/m? (3200 psig). The storage
sphares are loaded through a self-sealing disconnect (Figure 8) mounted
at the vehicle skin, The discotnect was hard-capped prior to launch to
provide redundant sealiag protection against gas-leakage.

The propellant supply and distribution system is induction brazed at
all tubing connect points (Figure 9) to minimize leakage. Fluxless
{nduction brazing provided a lightwedight leakproof joint. A modification
to the inlet fitting of each sphere and the addition of a bimetal joint
(Figute 10) provide the capability of Win-place” brazing of the supply
feed line to the distribution manifold and the sphere temperature

TR0
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Figure 1.~ Thruster Attitude Control System (TACS) Schematic
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Ground Loading Configuration

Flight Configuration

Figure 8 ,-

F111 and Drain Disconnect
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lastrumentation, The propellant discribution syatem includes 24 floxible
metal tubing mections (Figure 11) to provide for relative motion between
the "shoek" mounted—thruaster modula panels and the hard mounted distribu-
tion manifold, The two aupply line filiers (Mgure 12) located at the
inlet to each cluater of thrde modules utilize a multilayor otchod~diak———
congtruction to provido a 10-micron, nominzl filtering capability,

Instrumentation was providud for systom loading, checkout, and flight
monitoring, Two pressure transducars (Figure 13) located on the distribue-
tion manifold were provided to monitor gystem pressurc, A third pressure
transducer was provided for ground monitoring but not used during the
flight, Six temperature transducers (Figure 14) located in six storage
spheres equally spaced on the aft vehicle support structure were provided
to determine the average bulk 8ds temperature, A temperature transducey
was located at the inlet to ecach cluster of three modulesd at position

planes I and III, Six pressure switches (Flgure 15), one for each thruster,
prcvided—a positive indication of thruster firings.

2.2 PREFLIGHT TUST AND CHECKOUT. H1STORY

The TACS was certified- for flight after successful completion of
development , qualification, and checkout test programs., This effort included
development and qualification tests of the solenoid control valve, the in-
line gas filter, the fill~drain disconnect, the storage sphere, the bimetal
Joint, the manifolding, the temperature transducer, the pressure transducer,

and the pressure switch. The primary test objéctives, major problem areas,
and solutions are summarized in this section,

2.2.1 Thruster Module Assemtly Development and Qualification Test Prograns

Development test program.,- The purpose of the davelopment test program
for the thruster module assembly was to evaluate and establish a production
configuration for the TACS solenoid valve, The development valves were
tested at the valve, dual valve, and module levels to evaluate the valves'

functional, performance, and dynamic characteristics at various environs
mental and system operating conditions.

Several different main poppet seal materials and configurations were
evaluated in the initial phase of testing., The configuration that
demonstrated minimum leakage rates over the operating pressure range was
a conical poppet with a conical sealing surface using DuPont's "Vespel®
as the seal material, Also, the preload on the main poppet springs was

increased and all machined parts were chemically deburred to further
enhance the leakage characteristics,

Testing of this configuration revealed that the upstream valves did
not seal effectively with a high ialet pressure and low AP across the
valve, All valves exhibited sufficient sedling characteristics at moderate

e L kT et ke
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or high AP with gas trapped downatream of the valves and were leak tight

at all inlet predaures with ambient downstream pressure, The problem

was nolved by maintailning the proper AP across each upatream valve during
opervation, %hin was accomplished by removal of the Zenor diode in the
valve's voltage supprossion elrcult which incroased the closing time of

the downstream valve, thus lowering the trapped pressure between the valves,

During high tomperaturc tosting, cloctsical shorts developod in. tho
magnum solencid coll wire, This wae correctod by chanpging tho coil. wire
to conatantan and changing the insulation from toflon to polyimido., Also,
this wire was wrappod on an aluminum spool, and the entire assombly was
potted to provide greator heal—dissipation,

A problem with bent plunger flangoes was idontificd in tha downstraam
valves, Analysis révealed that pressure surges from the upstream valves
caused the plutger flange to impact the orifice plate, thus yielding the
plunger. flange. This resulted in slow pneumatic rudponsce within the
valve, A main poppat stop was incorporated in all productisén vdalves which
precluded impact of the plunger flange with the orifice plate.

Testing also revealed the existence of a leak patli behind thé lip scal
retainer which tended to slow the valve's openitg response. The cause of
the problem was associated witli gas leakage into the solenoid chambex,

A "Wespel" static seal was added behind the lip seal retainer.. Alde, the
plunger veat holes were increased from two to four, and microlube lubricant

was applied to the lip seal to further enhance the response characteristics
of the valve,

Loss of voltage suppression was encountered duxing testing which
was assocldated with failure of the diodes in the voltage suppressiom

circuit, This was solved by changing to high reliability diodes from a
new supplier,

During vibration tests of a nodule assembly it was deétermined that
the valve main poppets were experiencing high dynamic loads and were
actually utiseating (chattering) at a frequency which might cause damage to
the poppet seals and seats. To reduce the loads on the valve poppets during
vibration, "shock" moutts were installed between the thruster valve panels
and the vehicle aft skirt, Because the-"shock" mounting introduced more
degrees of freedom of movement between the valve panels and the dirtribution
manifold, additional flexible metal tubing sections were required.

Qualification test program.~ The putrpose of the qualification test
program for the thruster module assembly was to establish the flight
worthiness of the solenoid valve, module, and cluster (three modules).

The pressure switches, temperature transducer, filter, flexible metal tubes,
and manifold were included in the test specimen,
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Puring prequalification production accoptance teats at- the module
level, an upstream valve developed a blowing leakage, Subsaquent dige
arfembly revealad that the main poppet soal was fragmented with large
Aegments misaing, Uxtenalve tests at aimulated production accoptance test
conditiona ravealed that the valve fallure was due to an incerrdct test
aotup, The inlet manifold waa tmproporly nised causing a high reverae
AP condition to oxist across the upntroom valvo, thus failing the soal
undor. savere backflow conditions. Thio sonnsltivity to backflow was
vocognizad, and all subsoquont tost and oporating procodures wore rovicwad

and rowritten as roquired to ousure that no valve wad subjoctad to possiblo
rovarse {low conditions,

During vibraticen testing of the Inlot manifold installation, consisting
of the filtor and on¢ flexible tube assombly mountod on a—scction of the
aft skirt, tha clamp that mountdd the f£iltor to the skirt yicsdod, The
cldmps were redesigned aud the tests ropeated, The specimer, succosgsfully met
the qualification requirements with an additional tubo clamp batween the
fill line and. thruster manifold and the addition of doublars to the filter
support bracket. Post=vibration tusts raevaaled that the filter would not
moet imposed claeanliness requirements, The cleanliness requirements were
waived and no further action was taken because the flight filters had
bden installed, and cach valve contained an integral filter capable of
providing protection from the amount of contaminants that would be released
by the filter,

Qualification testing of the thruster module assembly (three modules)
conslsted of proof, leakage, functional, vibration, ordnance shock, duty
cyeling, continuous duty, thermal vacuum environment, electrical, and
nozzle cover blaw-off tests. At the beginning of the test program, mis=-
handling caused the module inlet temperature transducer to become inopetrative,
thus necessitating the qualification of this component under 4 separate test
program. All pressute switches used in the test gpecimen failed at various
times in the progtam. The cause of failure was determined to be diaphragm
fatigue in-all cases. Further qualification testing occurred in a gepdrate
test ptogram. During high temperature functional testing and priotr to
vibration tests, a downstream valve developed a blowing leak. The cause of
the severe leakage was determined to be a fragméented seal with similar
characteristics to the earlier failure in the module production acceptance
tests, Extensive testing and analytical investigation did not reveal the
exact cause of failure. The most probable cause of the failure was attributed
to a reduction in impact and fatigue resistance of the seal material, resulting
from the assembly stress condition which varies randomly with material
strength properties, manufacturing tolerances, and flow forces. The valve
was replaced and all testing was successfully completed,

Concurrent with the thruster module assembly qualification tests,
additional test programs were performed to investigate lip seal installation
on vdlve operating characteristics, to evaluate and identify environmental
and operational conditions which might contribute to or cause the seal to
fail, to establish confidence in the production scal configuration, and to
develop and evaluate backup seal configurations for use if the production
seal configuration had been assessed unsatisfactory for flight,
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The extenslve seal fallure teating did not identify any speciflc
factors which causaed the.seals to fall, Inoreased confidence- was gained
in the production seal configuration.for flight from this teat program,
A backup seal was developed and tented but was nov implemented into the
production valve program hocaune it did net offar any known advantage
over tho production configuration seal,

Bocauao of the difficultics axporionced with qualifying the pressuro
awitch and tomperature transducer in the thrustor modulo assombly qualifi-
cation-tost. program, these itoms woroe qualifiad at the compohont lovol
in a soparate tost program. Both compenonts war¢ subjcctod to proof,
leakage, functional, vibration, shock, burat, and cyclo testing.

Prior to the qualification of the tomporaturc transducor at the compo=
nent lovel during checkout of the flight TACS, one of the module inlet
temperature transducors was found to have an out of spoecification loak
from a weld joint, The magnitude of the leak did not warrant removal of
the transducer; howover, a stainless steel “clamshell" doubler (Figure 16)
was cpoxy bonded over the body of all the transducers to preclude further
leakage of tliis type. The temperature tramsducer with the "clamshell
doubler attachoed to it completed all qualification testing with o
anomalies or deviations from the requiremoents,

In tho qualification test program the pressure switch failed to actuate
during the post-vibration cycle life test., The cause of failuru was
determined to be a fatiguc rupture of the stainless steel diaphragm. An
evaluation test program was performed using presdsure switches with Kapton
diaphragms and production flight pressure switches with stainless steel
diaphragms, The results of this program indicated that the Kapton
material has a greater cycle life capability than the stainless steel
material, However, because of cost and schedule impacts resulting from
changing the diaphragm material and more realistic assessment of mission
cycle life requirements, the production pressure switch was considered
qualified at a reduced number of cycles. Also, the pressure switch talk-
back parameters were not critical to mission success and the nominal
mission cycle prediction wds less than the demonstrated cycle life of the
production units,

2,2,2 Pressure Sphere Assembly Development and Qualification Test Programs

Development test program.- The only component in the pressure sphere
assembly requiring development testing was the bimetal joint., The purpose
of the development test progrdam was to verify the capability of the design
configuration to meet the Skylab mission environment and operating require-
ments, Specific areas investigated were the redundancy of the joint,
pressure and load capabilities, weld joint and sphere neck configuration,
and tooling and welding procedurcs., Six test specimens were successfully
tested to demunstrate the acceptability of the bimetal joint configuracion
for production and flight usage.
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Assembly Detail of Shell

Figure 16,- Temperature Transducer Stainless Steel "Clamshell" Doubler
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Qualification test program.- The purposae of the pressurd sphere
assembly qualification program was to qualify the pressure sphere installa-
tion for.Skylab usage, The teat specimen included a pressuré sphere
assembly with temperature transducer, bimetal joint, and a degment of the—— .
thrudt structure, The hardware was qualified without any problems,

2,2,3 Flight System Chackout Tests

The flight chackout tests of the TACS were accomplished at Keénnedy
Space Center (KSC). Two relatively minor anomalies were noted during
checkout testing, One of the sphere mounted temperature transducers failed
to meet the specification leakage rate requirements when checked with a
mass spectrometer operating it the vacuum.mode, The magnitudé of the
leak did not justify removal of the transducer from the system, Extensive
tests were performed to quantify the maximum leakage rate possible through
existing leak paths to ensure flight worthiness. The results of the tests
and tlie magnitude of the flight transducer leakage indicated that this leakage
would not be detrimental to the mission, and no further action was required.

During componient inspection of backup vehicle hardware, the pressure
switches were found to be contaminated with mercury, It was postulated
that the flight vehicle pressure switches were also contaminated, $ince
mercury forms an amalgam with gold, which is used in the braze alloy
material, the possibility existed that the structural integrity of the ...
system might be compromised., To preclude loss of structural strength,
¢lamshell doubler assemblies were epoxy bonded over most of the braze
fittings in the areas adjacent to the pressure switches: Oné fitting at
each thrusteér location was inaccessible for retrofit. Also, extensive
tests were performed to évaluate the effect mercury contamination has on
the properties of the braze alloy used. The tests did not reveal any
detrimental short term effect on the streéngth of the brasze fittings.

yl - P L L A
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3+ THRUSTER ATTITUDE CONTROL SYSTEM MISSION SUFPORT EFFORT

This section déscribes the mizsion gupport effort relating to TACS

performancé ass¢ssment, real-time problem solving, flight anomaliés, and
the daily system evaluation,

3.1 THRUSTER ATTITUDE CONTROL SYSTEM PERFORMANCE PROGRAM

This computer program ahalyzed the performance of the TACS., The
performance program combines logic, which describes the gas storage and
delivery parameters, with a thruster performance program to obtain overall
system performance, Nozzle performance parameters évaluated include thrust,
specific impulse, flow rate, thrust coefficient, throat state, and exit
velocity and state, Also, the system parameters of total impulse and GlNy
mass were calculated, Input to the program consisted of the stored GN,
pressure and temperature, Pressute loss in transporting the GM, from

storage spheres to the thrusters and storage volumie varifation with pressure
were included,

The thruster performarice program. was developed by McDonnell Douglas
Astronautics Company (MDAC). A principal feature of this program.is its
employment of the latest National Bureau of Standards (NBS) real gas
properties for N,. An isentropic fiow process is useéd in the single phase
(superheat) region, and a shift is made to the homogeneous equilibrium
assumption for expansions bélow the saturation line, Also, a two-phase
expansion efficiency factor is useéd in tle two~phase region to account for
the nonisentropic phase change process,

A generdl description of the operation of the TACS performance program
is:

1. For a given (input) storage gas temperature and pressure, the mass
of gas i8 calculated, utilizing the real gas equation of state from
the NBS real gas properties for Ny,

2, A conversion to a selected base storage gas temperature is performed
holding mass con-tant, thus providing a constant base temperature for all
performance calculations,

3. Small pregsure increments are selected according to the base
thermodynamic state calculated in No. 2,

4, Thruster performance and system mass calculations are made for
each pressure incremcut, beginning with no pressure and ending at the base
thermodynamic state, Total impulse increments are obtained by multiplying
average specific impulse by the mass increment, and a summed total is
maintained for each pressure level,

PRICEDING PAGE BLANK NOT FILMED

s i s

S




24

5, The system performanee parameters are printed at ocach pressure
lovel., These results provide a history of total impulse and thruster
performance as mass o exponded from the base thermodynamie state caleulated
Ln NO. 20

Typlcal performamee curves that were gendrated uslng this program are
presénted In Figures 17, 18, 19, and 20,

3,2  SPECLFLC IMPULSE PERFORMANCE VERLFICAT 10N

Preflight predictions of specific impulse were based on a detailed
analysis of real gas effects on the OGN, expansion i the thruster nozzle.
The analysis could not be verified since there were no data available from
this program or other sources to detarmine the effect on performance of
condensation in the nozzle,

puring the mission, detailed analyses of the {light momentum data
were performed to get an empirical assessment of the specific impulse
performance. The data analyzed were limited to CMG reset maneuvers with
no data dropouts. 1t was believed that this was the only situation in
which the impulse imparted to the cluster could be determined accurately.
Ten reset mancuvers wére found to be usable for this analysis, .

The first eight reset mancuvers analyzed occurred during the SL-2
panned mission. The results for thesc cases indicated that the appat.nt
specific impulse was significantly higher than had been predicted at thd
measured module inlet temperatures, Even with the estimated error band
of over 10 percent for each point (caused by effects of gravity gradient
torques, rate gyro inaccuracies, data sampling intervals and resolution,
uncertainties in cluster mass properties, and mass flow rate), the
specific impulse data for some cases fell above the maximumt preflight
predictions.

Another analysis of apparent gpecific impulse was performed using
data from the SL-3 manned mission. Flight momentum data for two reset
mancuvers involving 80 firings were used along with thruster flow rate
data from qualification testing. The results of this analysis indicate
that the average specific impulse was 2 percent higher than the nominal
preflight predictions on the hot side of the vehicle and 7 pércent higher
on the cold side of the vehicle, based on a 70 percent two-phase efficiency
factor. The estimated accuracy of the results is +6 percent. 1t is
believed that this analysis is more accurate than the previous one because
of the increased performance stability of the astronaut fnstalled "six-pack"
rate gyro assembly during the $L-3 manned mission, Based on these results,
usce of the nominal preflight specific impulse predictions was continued for
the duration of the mission.

osh
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3.3 BOLENOLD VALVE COMPUTER MODLL

buring development testing of the thruster module ansombly, analyais
of the teat data revdaled that when four valves wore operated in the
aorics parallel configuration, the oponing rasponac of the downstream
valves was érratic (sece paragraph 2,2,1), The identical behavior was
observed for two valves In serics, but not in singlo- valve oparation,
Therafore, a detailed computer modeling offort fur the four-valve
configuration wae initiated,

Two potential causes of the problem were Ldentiflad: bending of tlie
plunger flange and leakaye behind the 1ip seal retainer. The computer
model verified that eithar of these mechanisms could lead to the anomalous
response behavior and that an empirical solution discovered in testing
(delaying the opening of the upstream valve relative to the downstream)
would tend t6 c¢liminate the prollem,

The computer model simulated the ¢lectrical, mechanical, pneumatic,
and body forces acting on the moving parts of each valve., Real gas
properties wete included in determining the flow rates and pressures in
the various valve compartments; and nonlinear effects of e¢lectromagnetic
lossés, back EMF, and hysteresis were inc¢luded in the electrical portion
of the model, The méchanical portion of the model—included tlhe effect
of externdl acceleration loads as well as sliding friction. forces
affecting the motdon of the valve parts, An algorithm monitored and
controlled the mechanical motion of the tlhiree mechanical parts to keep the
motion of these parts within specified design travel limits. Suxface
coefficients of restitution for hard and soft surfaces were included
to simulate the dydamics of impacting valve pagts.

The input routine was seét up to permit investigation of the sensitivity
of valve performance to dimensions (flow passages, solenoid air gap, etc.);
operating conditions (pressure, temperature, voltage, ute,); and other
variables such as friction coefficieénts., Selected output variables,
including pressures and currents, were plotted by the computer and used
for comparison with available test data, Other variables, including valve
stroke and valve forces, were output to give the designer a better under-
standing of the current signature traces. Comparison of test data with the
computer program output verified the program's effectiveness to predict
valve performance and operation,

3.4 THERMAL ANALYSIS UPDATE

TACS hardware was designed and qualified for a maximum temporature
of 347 °K (165 °F). Since the solenoid control valves were critical to
system operation, valve performance or anything that might affect performance
was closely monitored. Analysis of flight data obtained during the SL=2
manned misdion indicated that the valves at Position Plane 1 had reached
their maximum qualification test levels during a high beta angle period.
The premission thermal analysis had not predicted such an occurrence and,
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therefora, an lnveatigation was-initlated to determine the cause of the
difference betwéen the analytical and actual temperature values, Corraelation
between the flight data and the analytical praediction was obtainad by
asauming that the aft skirt white paint solar absorptivity, ag, was degraded
by retrorocket plume contamination. By varying ag from a design value of
0,31l maximum to 0,34 and using an actudl waste tank tomperature value of

322 °K (120 -°F) rather than the original prediction of 300 °K (80 °F),

the thermal modol predictions agrecd ¢losdly with the actual valve modulc
temperaturcs. Photographs of thd aft skirt area obtained by the first

créw furthor verified the optical degradation of thasa surfaces, The
in¢reascd ag had resulted in higher temperatures than originally predicted,

Based on the above flight data corralations, prodictions for the
third and final manned mission. (SL=4) indilcated that the qualification
maximum temperatures would be exceeded during the orbits where the vehicle
was continuously exposed to the sun during the periods of minimum beta
angle,. This could be caused by: increased solar intensity in tle
November-January period as the earth- approached and. recaded from perihelion
and by further degradation of the solar absorptivity, og, as the sun
exposure time increased. A worst case temperature of 369 °K (204 °F) was
predicted for the negative beta angle periods. Maximum, minimum, and
nominal thermal predictions for the third manned mission time period-are
shown-in Figure 21, Actual £light temperatutre data are also plotted for
the Position Plane I module inlet, The maximum temperature actually
observed was approximately 353 °K (175 °F), indicating that the paint did
not degrade as much as assumed in the worst case prediction.

3.5 SOLENOLD VALVE THERMAL TEST.PROGRAM —

An analysis of the basi¢ valve design was performed to assess the
valve*s capability to withstand the high témperatures preédicted. for the
final manuned mission (see paragraph 3.4), The analysis included evaluation
of clearances betweén moving parts, electrical charactetistics, material
properties of the valve domponents, and areas of concern relative to valve
operation at elevated temperatures. Although the analysis did not rewveal
any definite problems, the interaction of individually insignificant
geometric changes in the valve was considered to have potential effects
which might adversely affect valve operation. As a result, a test program
was initiated to verify valve operational integrity at elevated temperatures.,

The objactive of the test program was to determine the effects of the
elevated temperatures on valve response times and leakage characteristics
at environmental conditions predicted for the SL-4 manned mission maximum
heat flux periods, Tests were performed on a thruster module assembly at
room temperature to establish a base line with which to compare test results
from other test phases, The tests performed were electrical, proof pressure,
external leakage, response at three pressure levels and nominal operating

voltage, and internal leakage prior to and after each response test for each
pressure level,
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High temperature testing was conducted which consinted of aoaking the
thruster module at approximately 369 °K (205 °F) for 28 hours with
9,653 x 10° N/m” (1400 peig) inlet presnure, During tho soak period the
valvos were eyeled to doterming thelr reaponse charactoriatiens, and intornal
laakage moasuremants wore taken prior to and aftor each Aapecifiad numbor
of cycles, Aftor the cycling and soak test was completed, to#ts ware

performed at room tomperaturd to provide data for comparinon with the base
line data,

Additional high tomparature soak tasts wore porformed at approximatoly
369 °K (205 °F) ond a module inlot prossurc of 2,068 x 10° N/m® (300 psig)
to simulate maximum temperaturae and minimum prossure conditions that might
axist nedr the ond of the mission, This tast was also followed by room
tempoerature checks for basc line comparison purposcs,

Extendive analysis of the test data indicated that the thruster module
agsembly performad normally throughout all phases of the testing, Internal
loakage measuremént results obtained during the test program were withi:
specification requirements, The response characteristics of each.valve at
high temperatures were comparable to those obsecrved in tha room temperature

and initial qualification test program high temperature testing, All the . .

electrical and pneumatic response characteristics werc withid spacification
requirements, In view of the expedient test facility thermal control method
employed, the actual temperature of cach valve ranged from 366 °K (200 °F)
to 378 °K (220 °F), One noteworthy observation was current fluctuations
that were recorded during both room temperature and high temperature
testing, Similar anomalies were alsc observed during the initial qualifica
tion testing., Based on an analysis of the data, the current fluctuations
were not related to the thdrmal conditions. The rapid current change
indicates that the valve poppet moved toward the closed position momentarily
and then returned to a full open position. This movement of the valve
poppet did not manifest itself in a change in thruster chamber pressure,
and consequently module performance was unaffected,

3.6 ALTERNATIVES TO PRECLUDE SOLENOID VALVE THERMAL PROBLEMS

Concurrent with .he TACS valve thermal test program which is discussed
in paragraph 3.5, a study of options or means for avoiding the high valve
temperatures was initiated, The objective of the study was to establish
the most feasible means to protect the valves from high temperature exposure
in the event the valve testing revealed that temparature related problems
existed, The options were divided into those which avoided the use of the
valves during the high temperature periods and those which reduced the
valve temperature, The options are summarized in the following paragraphs,

Based on a November 1l SL-4 launch date, and assuming that the Attitude
and Pointing Control System (APCS) was operating properly, the TACS was
only needed for CMG momentum relief, Operational failure modes could be
avoided by inhibiting the thruster system during the high temperature
periods. This plan could have impacted nominal flight plan activities by
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climihating maneuvers out of solar inertial, eliminating Extravehicular
Activity (EVA) and minimizing vent disturbancea and momentum dump inhibits,
Becauses the thruater ayatom would be required for docking, inhibiting the
thruscers during the high temperature perlod would necdsaitate a launch
dolay until more acceptablo conditions were prescnt, Thua a launch delay
wat a poaaiblo option,

Lf tosting rovedled a high temporature failure could eccur, oven if
the valvea were not oporatoed, soveral mothods of thermal shiclding werd
investigated, Throe of these methods involved the crow physically
modifying the structure around the Position Planc 1 thruster nozzles. The
neeessary hardwarce and procedures would have been daveloped on the ground
and flown up with the crew, Thesc options wores

1. A sheet motal shield which would be attached to the aft skirt
around the thruster valves. Weight and volume for. CSM stowage were
disadvantages.

. 2, Application of a thermal paint using either an aerosol cau, brush,
or cloth, Technique of application was the biggest disadvantage.

3, Application of aluminized tape to the aft skirt area around the
valves, Adhering characteristics were unknown.

Two other concepts were suggested, The first was to control valve
temperature to an acceptable level by maintaining a pitch attitude similar
to that used during SL-1, This method would impact system usage for CMG
momentum relief and the temperature of other cluster componerts. The
final concept relied on the use of the Ny gas supply to cool the hot valves.,
Since the average bulk gas temperature would be about 294 °K (70 °F) at
minimum beta angles, a series of pulses. genetated by commanding small
attitude manauvers would allow this relatively cool gas to lower the valve
temperature, High gas usage was a major concern with this method.,

Of all the alternatives considered, the installation of the sheet
metal heat ghield by the crew appeared to be the best. However, following
completion of the valve high temperature testing, a detailed review of
data showed no indication of abnormal system performance, Consequently,
no hardware or mission changes were made, and the TACS completed the
Skylab program successfully,

3.7 SUPPLEMENTAL SYSTEMS STUDIES

The excessively high consumption of TACS propellant, GN,, during the
carly part of the Skylab mission, prompted the initiation of studies of
methods for either resupplying or supplementing the cold gas system,
Various concepts were evaluated in an effort to determine the most feasible
method of resupply/supplement, Certain candidate concepts, which are
listed below, required extensive EVA and additiottal systems and component
hardware to be carried up in subsequent Skylab launches:
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Method 1 = Carry up a resupply module on 8L-4, tranafer medule to
orbital Workshep (OWS) aft skirt and comnect to the TACS {11l line,

Method 2 = Carry up a vesupply module on Hl=4, ldave meduld in CM,
and connect to TACS fill linc uding a long high prossure heso,

Mothod 3 = Comnoct onboard axporiment gas (GN,) tanka on Mrlock
Module (AM) to TACS using a long high prosasure hese,

Mothod 4 - Same as Mcthods 1, 2, or 3 oxcopt hoso would be connactod
to the pitch thrustor, and gas backflowed through the thrustor valwves,

Mcthod 5 = Same as Mathod 3 cxcept onboard GN» from AM tanks would be
used,

Mcthod 6 = Install an adjustable thruster in the -2 axis Scientifie
Aflrlock (SAL) and utilize 0y or N; from AM tanks.

Method 7 = Load additional propellants and use the CSM attitude
control propulsion system as a supplemental OWS attitude control system.

Method 8 = Carry up an Ny resupply in a cryogenic state and include
systems for gasifying and transferring to the TACS.

Method 6 was selectad as the best concept for supplementation based
primarily on: use of excess onboard consumables, no requiremant for EVA,
minimum hardware requirements, and minimal crew training and installation
time, :

Initially, the thruster assembly design included provisions foxr use
of both 0, and Ny gas supplies located in the AM, Further detailed
analysis of the design revealed potential problems associated with com-
patibility of certain lubricants and seal materials with the 0, As a
result, subsequent design and test activities concentrated on the Np
system,

The maximum total impulse .nd thrust level obtainable with the SAL
thruster assembly was 151,240 N-sec (34,000 lbf-sec) and 53,4 N (12 1bf),
respectively. Using a rotatable thruster concept, the thruster assembly
could be used to supplement the TACS during the EREP experiments and for
desaturating the CMG's in attitudes where the gravity gradient dump

schieme was not available,
]

The thruster assembly and the installation through the SAL are ghown
in Figure 22, which depicts the major components of the system, Maximum
utilization of onboard hardware is illustrated in that only the thruster,
valve assembly, boom assembly, and certain quick disconnects were to be
carried up, All other hardware including the N, supply unit, experiment
canigter, dand the water hose were onboard the OWS.
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Operation of the thruster assembly would require manual actuation of
the valve by the astronaut for a predetermined porlod of time, depending
o the impulse roqulrement, A disk Lndicator permittod ortontation of the
nozzle to the desired angular potittion to provide uncoupled torques about
the roll, piteh, and yaw axes, Installatlon of the thruster assembly used
procadurds almilar to those required for an snboard cxperiment,

Vorification testing of the hardware ineluded performanee acceptance
testing of the valve and the thrustoer assembly, 0, compatibility, and
lubricant tests., The hand opérated ball valve was fdeatical to that used
onbcard the OWS in the fecal dryer system, The higher operating pressurs
and increased cycle requirements for the thruster assembly application of
the valve requived that proof, leak, functional, cycle life, and burst
tests be conducted to verify the valve integrity,

Mockup hardware was- delivered to Johnison Space Center (JSC) for use
in crew training excrciscs and flight hardware was deliveved to KSC prior
Lo the SL-3 launch. A systems status assessment of the APCS prior to the
launch, and the more urgent need for other hardware items to be supplied
to the workshop resulted in a decision not to use the SAL thruster
assembly during the remainder of the Skylab mission,

3.8 MLSSION SUPPORY

The Mission Support Team for the TACS manned the Huntsville Operations
Support Center (HOSC) 24 hours per day, 7 days per week during SL-1, SL-2,
SL-3, and SL-4. For the unmanned missions on—call personnel were available
24 hours per day, 7 days per weck, A daily status report was submitted
every day of the mission from the launch of the Skylab Cluster to completion
of the APCS engineering tests at the end of the mission., With the
exception of the SL-1 and SL-2 missions, each status report was coordinated
with JSC mission support persomnel whencver the system was active,

Prior to the Skylab mission, the performance of the TACS was analyzed
and the curves were generated using the GN, performance computer program
(sce paragraph 3,1). These curves were used to determine the performance
of the system during the mission, using real time telemetry data,

The JSC TACS consumable status was generated by a Hewlett-Packard
computer program using recal time data, The program's performance equations
were mathematical curve fits of the performance curves generated at the
Marshall Space Flight Center (MSFC) prior to start of the mission. The
Hewlett-Packard computer's limited data storage capability required the
use of compact equations, One obvious disadvantage of this method of
computing the system status is the error introduced by usc of the curve
fit cqudtions; however, the error was normally less than 3 percent,

Two methods were used to estimate total impulse remaining. One method

wag based on GN, mass calculations using tcelemetry real time data, Basically,
this method employed the curves generated from the GN, performance computer

v ve e e wm— v v
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program or actually uned he computor propram (o calealate masn ad total
fmpulse vomalning at appropriate thwmes duvtng the mluston,  The batior
approdach was the most acewrate method {o determine syntom status,  The
other method ut tllsed the min Lo tmpulae bit (MIB) and wan very useful
tor a quick detorminat fon of tmpuloe unape,  Thils method was based on
ertimating the total tmpuloe por threaster (iringy and mult iplyfng thin by

Che number of firings.  The total tmpulse per firing was caleulated by the
equat fong

by = Ky (b + At

wiiero
Ly = total fmpulse
Favg = avorage thrast
t = command pulse width

AL = time factor added to account for thrust taitotfy,

The thrust level was determined from the performimee curves as a function

ot flight system prossure and average module inlet tomperature.,  The
command- pulse width was changod periodically as a tunction of che MLB
requived,  The thrust tatlot! time was vaticed from 25 to 10 msec during the
tinal manned migsgion in an attempt to provide bettor cowrrelation between

the MIB and mass methods of caleulating total- impulse remaindng,  Compar{son
of total fmpulse remaining values computed near the ond of the mission by
the different methods indicated that a 15 msee tafloff tactor mors ¢losely
approximated the actual fmpulse oxpended,

Several problems were encountered during the mission support phasce,
One problem was the fngtrumentation trangducer noise (see paragraph 3,9)
that occurred during mamned missions. The noise was of a sufficient randow
nature that averaging large numbers of data points created no difficultton,
and the results were consistont cnough te be beneticial, A second problen
fnvolved apparent excuds mass consumpt fon when performing mass caleulat fons
fnmedfately after large system usage. The indlcated mass of GN, romafining
tended to increase with time until a stable condition was rcached and
repeatable results obtatned, This phenomenon was associated with the
existence ot temperature gradients within cach sphere (sce paragraph 3, 10)
and was taken into account when applying the mass calculation results
Lo system total fmpulse remaining determinat fons, Finally, the nonreal
time data were of limited usefuluess to the mission support eftort, The
All Digital Data Tape (ADDT) wvent data (thruster pressure switch actuations)
were too nodsy to have been of any practical benefit, The Mission
Operatfons Planning Systom (MOPS) stored and processed data in a centrally
Located computer which was accessed through remote terminals, During the
carly part ot the mission, these ddata were of limited usefulness becauge
they were not usually avallable or were erroneoud,  However, during the
Latter part of the misston the data were more consistently available and
aeeurates  In this case (v did provide a neaningful supplement to the
real time data system,

szl |
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3.9 PRESSURE TRANSDUCER NOLSE

The telometry system pressure measurements were observed to fluctuate
by as much an 4,137 x 10° N/w” (60 pata) Just atter the Sle3 C8M docking
on bay of Year (DOY) 209, The fluctuatlons were not noted durlug the
pravious orbital stowage phase of the misaion,  Although the measurdmonts
rémained within system tolerauwces, an investipation was made to deteraine —
the probable cause of the nolsce,

Review of data from DOY 208 through bHOY 216 indlcated that the data
on two different multiplexers and thelr respeetive reference channels were
dtable until the manned phase. When the Skylab was manned, thero was a
noticeable increase in noise for the subject pressure measurements and their
respective multiplexer reference channels,  ‘Three other reference channels
were evaluated and they also showed increased noise content, Since the
presence of the CSM with its assoc sted electronic equipment may have
caused the configuration of the rad.e frequency field to have changed
following docking, the most probable cause for the fluctuations was that
the signal lines woere experiencing radio frequency interfercnce,

The fluctuations of both presgure measurements continued throughout
the manned phases of the mission. However, accurate mass calculations could
still be made by averaging many data points to remove th¢ random fluctuations
caused by the noise. No further investigation or troubleshooting of the
instrumentation system was necessary,

3,10 SPHERE TEMPERATURE ANOMALLES

It was noted during the mission support effort that mass calculations
did not stabilize until some period of time after large gas usages. After
equilibrium conditions were restored, the mass calculations yielded
consistent results., An analydis of flight data was performed to determine
possible means of eliminating this phenomenon from future missions and to
evaluate its effect.

Calculations of the Raleigh Number indicated conduction to be the
domindant heat transfer mode in the storage sphere since body forces acting
on the gas werc small except for brief periods when gas was being withdrawn,
In most indtances the rate of withdrawal of gas from the spheres and the
rate of change of the radiation environment were small enough that heat
transfer by conduction could maintain a state of near equilibrium between
the gas and the metal sphere. However, during periods of large usage,
the gas expansion tended to cause the gas to cool faster than the sphere,
with the result that a nonequilibrium condition existed for some time
after the usage. During this transient period, large temperature gradients
could have existed within the gas,

The sphere temperature transducer installation was designed to minimize
the effect of temperature gradients within the sphere by placing the sensiap
element at a point where it would read close to the mean gas temperature in
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the sphere during the transient peried. Since this mean temperature

point could shift and methods for analyzing 1ts location are not veory
aceuratey 1t was to be expected that there would be some error inheront

in the temparature data during the transient perlods, Filgures 23 and 24
show the approximate magnitude of thds error for a representative gas usage
period, The temperature during the transiont period read higher than it
should have baded on calculations of mass from subsequent equilibrium data,
This trend was obscrved—during most pariods of high gas usage., Mass
calculations using pressure and temparature telemetwy data performed durdng
the transient period ylelded erroncous results, These tended to indicate

a greater mass usage than that calculated from cquilibrium data.

The analysis indicated that the transducer sensing elements should
have been located slightly farther from the wall to give a better
estimate of the mean temperailure during the transient peériod,

3,11 INSTRUMENTATION ERROR ANALYS1S

During the mission, the TACS pressure required to provide a minimum
of 44,5 N (10 1bf) thrust was reassessed., To accomplish this task the
accuracy of the system indtrumentation, including telemetry, had to be
more realistically determined,

Prelaunch loading requirements weére based on an instrumentation error
analygis, Individual instrumentation transducer accuracles (pressure and
temperature) were obtained from a study which evaluatad all ontboard and
ground support equipment components, These accuracies were used to devélop
a f111 enivelope which guaranteed that the minimum loaded GN; mass would
meet all Contract End Item Specification and mission requirements.

During the mission, available total impulse remaining was calculated
using system pressure and bulk gas temperature., The usable total impulse
was obtained by subtracting an unusable amount from the available
calculated total impulse. The unusable total impulse was originally
based on & minimum system pressure required to provide 44.5 N (10 1bf)
thrust, including instrumentation inaccuracies,

During the decond manned mission, an analysis was performed to deter-
mine whether the usable total impulse could be increased by reducing the
amount previously considered unusdble, The analysis reviewed calibration
and test data for the specific pressure transducers installed in the flight
system, A 3-0 error band was determined for each transducer and then
combined with the telemetry system errors to yiecld a pressure reading
inaccuracy of +4,688 x 10° N/m” (468 psia). Also the telemetry bit size
of approximately 1,034 x 10 N/m’ (15 psia) was included.

Using the results from the above analyses and the requirement to
provide a minimum thrust level of 44.5 N (10 1bf) for a rescuc mission
docking, the minimum allowable system pressure was lowered from 3,020 x 10
to 2,530 x 10® N/m’ (438 to 367 psia). This reprcsented a gain in usable
total impulsé of 14,283 N-sec (3211 Llb-sec).
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3,12 THRUST LEVEL-REQUIREMENTS

The premisaion thrust level requirements for the TACS arc presented
in Table 1, These requirements imposed a restriction on available TACS
usable impulse, A system prossurc of 2,53 x 10° N/m" (367 psia) including
allowance for telemetry and instrumentation inaccuracies (see paragraph 3,11)
was. required to provide a thrust of 44,5 N (20 1bf), Therefore, the total
impulse remaining in the TACS when the pressure decays below 2,53.x..10% N/m‘
(367 psia) is by definition unusable,

Since the potential te gain additional impulse existed by lowering
the réscue mission thrust level and, therefore, thc systém pressure, a
review of rescue and other.mission thrust level requirements was initiated.
during the SL-3 mission. An analysis was performed to évaluate thrust
level requirements for various mission events utilizing available flight
and design-data. The results of the analysis shown in Table 2 indicate
that a rescue mission CSM docking in the radial port would require 44.5 N
(10 1bf) wiich would not allow the premission thrust level vequirement
to be lowered.
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Table 1.~ TACS Promission Minimum Thrust Level Requirements
Mission Events Newtons Pounds=Force

Booster Separation Transients 222.4 50

Each Manned Mission CSM Docking 89.0 20

From Last Manned Mission Docking 44.5 10

to End of Mission

Rescue Mission CSM Docking* 44,5 . 10

*This requirement appended to original premission theust

requirements.

Table 2.~ TACS Minimum Thrust Level Requirements Analysis

Mission Events Newtons Pounds-Force
Earth Resources Experiment Pointing* 8.9 2
CMG@ Reset Maneuver* 8.9 2
Momentum Desaturation Mancuver* 8.9 2
Tri Burn--Four CSM Engines 89.0 20
Trim Burn--Two CSM Engines 44,5 10
Rescue Mission--Nominal End Port 22,2-44.5 5-10
Docking
Rescue Mission--"Worst Case" Radial 44.5 10
Port Docking

*This thrust level is not optimum but is usable,
levels might be acceptable but were not studied
required rescaling of the simulation.

Lower thrust
because it
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4+ THRUSTER ATTITUDE CONTROL SYSTEM DETALLED MISSION EVALUATTON

This section contains the.dotatled flight avaluation of the TACS,
The data are presented by mldslon phase for $L-l, S8L-2, orbital atordgo,
8l-3, orbital storago, amd Sl-4, The data prasentaed for the orbital

storago phasds were kept at a minimum because the TACS was inactive,

4.1 FIRST UNMANNED ORBITAL STORAGL PERIOD, SL-1

The TACS was pressurized for flight to 2.083 x 107 N/m® (3021 psia)
on April 30, 1973, Approximately 647 kg (L4206 lbm) of ambilent temparature
GNy were locded, The loading envelope showing the prelaunch temperature
and pressure conditions at completion of system pressurization is presented
in Figure 25,

The Skyiab. Cluster assembly was placed in carth orbit by a Saturn V
launch ve'icle on May 14, 1973, Lift=off occurred at 134:17:30:00 oMI,
During the boost phase the dual purpose micrometeoroid/heat shield was
separated from the vehicle by gerodynamic forces, Also, one of the solar
array asseémblies was severed from the OWS and the other was—prévented from
fully deploying,

The TACS was activated at 134:17:39:52 GMI'y, at which time fiving
comnands were received from the Launch Vehicle Digital Computer (LVDC)
located in the Instrument Unit (IU). The TACS functioned as the primary
attitude control system until control was transferred to the Apollo
Telescope Mount Digital Computer (ATMUC) at 134:22:20:05 GMI, At this
time the CMG's were opinring up and had reached 25 percent of nominal
monentum. Tlie low momentum coupled with excessive rate gyro drift resulted
in the automatic selection of "IACS Only" control.. Because the heat shield
was severed from the vehicle, the APCS was required to maintain a "thermal
attitude" to keep workshop temperatures within acceptable limits., These
thermal attitude manéuvers were performed using "TACS Only" control. CMG
control was enabled with nominal momentum for the {irst time at
135:11:48:31 GMT,

The total impulse remaiuing for this initial unmanned period is
presented in Figure 26, Latrge gas consumption on DOY's 134 and 135 resulted
from removal of rrbit insertion transients and operation in a "“TACS Only"
mode until transier of control to the CMG's was effected, The total impulse
usage rate remained high because the system was required to perform frequent
CMG resets while maintaining the thermal attitude, A detailed listing of
TACS usage is presented in Appendix B,

The system pressure decay and GN, mass are shown in Figures 27 and 28,
Both parameters display blowdown characteristics similar to the total impulse
remaining curve, The thrust level variation for this phase of the mission
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is shown inVFigure 29 and 14 compared to the thruast level stored in the
ATMDC, The variation in MIB (Figure 30) alao shows the times at which the
ATMDC command pulse width was updated, With the exception of a. hrief
period during DOY 136 and early in the misslon when the system predsure
was high, the MIB was maintained at approximately 27 Nesae (6 lhf-aec)

for efficient vehicular momentum management.,

Figurcs 31 and 32 prosent MIB-and full=on firing historiod during
ATMDC control (the firing hirtory whilo—on IU control was not racorded).
A full-on firing is defined as a firing of 1 sec command pulsc width
duration., Firings of longer duration aro counted as individual 1 sac
full-on £irings equal to the number of soconds of the firing command,

The average bulk gas temperature is presented in Figure 33, The
average bulk gas temperature is the arithmetic average of the six
temperature transducers located in cqually spaced storage spheres on the
aft struetura, The beta angle variation Ls shown in Figure 34, Beta
angle des¢ribas the orientation of the orbital plane withh respect to the
sun veétor., Positiveé values of beta angle are defined as the orientation
of the orbitsl plane wlhen the apparent orbital rotation of the spacecraft
is in a clockwise direction when vicwed from the gun, Negative beta.
angles are-defined by the apparc¢nt orbital rotation of the spacedraft in
a counterclockwise direction, ' Note that during most of this phase of the
mission, the average bulk gas temperature does not increase as is expected
with a decrease in negative beta angle; this is attributable to cooling of
the bulk gas after orbitul ingertion. Orbital thermal equilibrium was
established at approximately DOY 142, thereafter the bulk gas temperature
responded to the changes in beta angle,

The module inlet gas temperatures and the average module inlet temper=
ature are presented inm Figure 35, Inh solar inertial attitude, Module One
is located on the hot side 6f the vehicle at Position Plane I and Module Two
is located on the cold side of the vehicle at Position Plane III, Cooling
of the hardware and gas occurred at these positions afteér orbital insertion
until thermal equilibrium was established, The process was similar to that
occurring in the storage spheres,




46

400 — -:190
380
- T
360
~180
g 340
2 | ~175
3
o320
Ky
3
g -J7e
3
8 300
- -165
280
—160
260
{55
240L
134 136 138 140 142 144 146

Day of year

Figure 26,- Usdble Total Impulse Remaining, SL-l

Total impulse, 103 1bf-sec




Pressure, 10 N/m

47

22

- 3100
21
20 2900
19 po

< 2700
18

- 2500
17
16 = 2300
15

L]_ - 2100
1 |
13 — 1900
ﬂ

12 Hhi 1700
"

1500
10

134 136 138 140 142 144 146

Day of year

Figure 27,~ GN, Pressure, SL-1

Pressure, £sia




48

Mass, kg

660

=1 1450
640 _

=1 1400
620

=11350
600

=11300
580
560 11250
540. ‘ =11200=

a
£

520 1150
500 ﬁt‘—l__" =11100
480

11050
460

=11000
440

~ 950
420

134 136 138 140 142 144 146
Day of year

Figure 28,- GN; Mass, SL-1




DRSSk ahan At ot T2 Thibli b AT e A ke 4

Elight Computer Thrust Level, 1bf -
[ {7 — a7 —— e 3y e g
T u;

460 -ﬂms
440 T 411 00
420 [ U S = 95
400 \' - *
-1 90 *
380
= - 85 Y
- £
o [
= k.l -180 2
£
340 a
~ 75
320
L 1"
300

=1 65
280—
_—ﬁ—q
260 ﬁ-\th-1 60

240L ~t 55
134 136 138 142 144 146

140
Day of year

Figure 29,~- Thrust, SL-l'




|

50

Minimum impulse bit, N-sec

Pulse idth, msec

e« 50 ..|::zo'. 50 .|..——-— 0 ﬂ{aor-

40

'\-‘

35

3
) - ’_"—L._,__‘____H ‘4 6

20

15
134 136 138 140 142 144 146

Day of year

Figure 30,~ Nominal Minimum Impulse Bit, SL-l

YMinimum impulse bit, Tbf-sec




2800T~

2600

24005

2200

2000

1800

1600

1400

Thruster firings

1200

1000

800

600

400

200

0

134

136

138

140

Day of year

142

144

146

Figure 31, Accumulated Minimum Impulse Bit Firings, SL=1




22

24

20

18

—
[=a)

—
g3

Thruster firings
~

—
o

134 136 138 140 142 144 146
Day of year

Figure 32,~ Accumulated Full-On Firings, SL-1




53
. 320
- 100
; 290 - -
X . - 50 &
T g g—
S 260 2
[ Py 0 &=
8 ~ g
9 o
230 han thiaad bttt * -,-..-——----—: .50
200 -100
134 136 138 140 142 144 146
Day of year
Figure 33,~ Average GNy Bulk Gas Temperature, SL-l
0.6
6.3
B -1 15 g’
g g
£ 0.0 0 g
N~
-0.3 \ 1
\\ |
“-30 ;
'().6 |
134 136 138 140 142 144 146 |
Day of year !

Figure 34,~- Beta Angle, SL-1

i ST S




54

320
-1 100
Module 1 '
290 - IR PR SN - N
3 N "
QT S
£ 200 P 1 ¢
2 o
g Module 2 m/ 8
o ad -1 50
200 =100 f
134 136 138 140 142 144 146 i
Day of year j
320
- 100
290 |—\
¥ \\/ 7%,
[
§ ’/\\\\‘ Average A -
3260 NP -~ - —ir 1 g
§ ~ :
b 3
= 5
23n — 4 e - — 3 .50 -
200 =100
134 136 138 140 142 144 146

Day of vear

Figure 35,~ Module Inlet Temporatures, Si-1




4e2 FIRSY MANNED-MISSION, SL-2 (28 DAYS)

The firat three man Hkylab crew was launched fiom KSC on May 25, 1973,
Lift-off oceurred at 145:13:00 GMT. The CSM docked with the orbiting
Skylab Cluster at 146:03:40 GMT, Two EVA's . sre performed during this
phase of the mission: one on DOY 158 and one on DOY 170, Crow accomplish -
ments include deployment of the sunshade and frecoing of the solar array
80 that it could fully deploy,  CSM undocking oceurred at 173:08:55 GMT,

The TACS was utilized extehsively during the firsat § days of this
initial manned phase., The total impulse remaining is prosented in
Figure 36. It can be gecn Lhat the system usage was reduced after DOY 150
because of decreased impulse demands., A detailed listing of all usage
for this period is presented in Appendix B,

The system pressure decay and GN, mass are shown in Figures 37 and 38,
The thrust level variation for this phasé of the mission is shown in
Figure 39 and is compared to the thrust level stored in the ATMDC. The
variation in MIB (Figure 40) also indicates the times at which the ATMDC
command pulse width was updated, The MIB was maintdined at approximately
22 N-gec (5 1lbf-gec),

Figures 41 and 42 present thruster firing histories for this mission
phase, The MIB firings and fulleon firings are shown separately, The

of time because orbital thermal equilibrium conditions had been established,
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43 B8ECOND UNMANNED ORBITAL STORAGE PERIOD

The TACS was inactive throughout the orbital storage period from
approximately DOY 173 to 209, Consequently, the total impulse remaining,
the GN, mass, the MIB firings, and the full-on firings were constant,

The variation in system pressuré resulting from changes in bulk gas tem-
perature with beta angle is shown in Figure 46,

The beta angle variation and the average system bulk gas temperature
are shown in Figures 47 and 48, Average module inlet temperatuve and the
individual module inlet temperatures are shown in Figure 49,
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4e4 SECOND MANNED MISSION, SL-3 (59 DAYS)

The second three man crew was launched from KSC on July 28, 1973,
Lift-off occurred at 209:11:10350 GMT, The CSM achieved final docking
to the SKylalbl Cluster at 209:19:39 GMT, Three EVA's werc performed
during this mission on DOY's 218, 236, and 265, Crew achievemeénts included
the deployment of a sun shield over the parasol sun sliield inastalled by the
first crew and the installation of the rate gyro "six pack". The CSM

undocked from the Skylab Cluster at 268:19:49 GMT at the completion of
this mission,

The TACS total impulse remaining for this second manned mission is
presented in. Figure 50, A detailed listing of TACS usage for this time
period is presented in A-pendix B,

The system pressure decay and GN, mass are shown in Figurés 51 and 52,
The thrust level variation for this phase of the mission is shown in
Figure 53 and is compared to the thrust level stored in the ATMDC, The
variation in MIB (Figure 54) also indicated the times at which the ATMDC
command pulse width was updated. The MIB was maintained at approximately

22 N-gec (5 lbf-sec), The MIB and full-on firing histories are shown in
Figures 55 and 56,

The average bulk gas temperature is presented in Figure 57. The beta
angle variation is shown in Figure 58. The module inlet gas teniperatures
and the average module inlet temperature are presented in Figure 59,
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4.5 THIRD UNMANNED ORBITAL STORAGE FERIOD

The TACS was ilnactive throughout the orbital storage period from
bOY 268 to 3204 The total impulse remaining, the GN, mass, the MIB
firings, and the full-on firings were constant. The varlation in systém
pressure rosulting from changes in bBulk gas temperature with beta angle
is shown in Figure 60,

The bata angle variation and the average system bulk gas température

are shown in Figures 61 and 62, Average module inlet temperature and the
individual module inlet temperatures are shown in Figure 63,

9.8

=1 1400
9.6

(=)
.
<3

-1 1350

(Vo]
L d
N

w0
.
-

Pressure, 10% N/m?

1300

Pressure, psia

8.8

A A

8.4L
260 270 280 290 300 310 320 330

Day of year

Figure 60, GN, Pressure, Third Unmanned Phase




Day of year
Figure 6l,- Average GN; Bulk Gas Temperature, Third Unmanned Phase

1.50
-1 60
0.75
/\ Jd 3
\ o
Q
0.00 0%
* o
\\ >
d-20%
“0075
\\ ~1-60
"] 050 .
260 270 280 290 300 310 320 330

Day of year

Figure 62, Beta Angle, Third Unmanned Phase

Temperature, °F

19
360
-1 150
320
¥ -1 100
g
gzso —f—— e — J-us* e 50
5 4
[t
240
— -50
200 =100
260 270 280 290 300 310 320 330




80

360
- 150
b
320 l\.—. S
¥ =T Module 1 < 100
g
2 -
gzeo 50
E 1 o
240 Module 2
T ‘_"’-~"“-\~ -1 -50
200 -100
260 270 280 290 300 310 320 330
Day of year
360
-1 150
320
¥ -1 100
£
280 Average = 50
g L P s S
[=N
§ 4 o
240
- -50
200 -100
260 27C 280 290 300 310 320 330
Day of year

Figure 63,~ Module Inlet Temperatures, Third Unﬁanned Phase

. Temperature, °F

?emperature, °F




81,

4,6 THIRD MANNED MISSION, SL-4 (84 DAYS)

The third and final three mai crew was launched from KSC on November 16,
1973, Lift-off occurred at 3203114303 GMT with docking of the CSM to the
Skylab Cluster occurring at 320:21:41-GMT. Four EVA's werd peérformad
during the mission on DOY's 326, 359, 363, and 034, Comet Kohoutek science
was added to the mission objeéctives because the comet perihelion and
optimum viewing opportunities coincided with this mission phase, Although
the Comet Kohoutek science did inmcre..se the projected TACS usage, of more
significance ralative to system usage was the loss of CMG No, 1 on DOY 326,
The CSM undocked from the Skylab Cluster at 039:10:34 GMT in Year 1974,

This completed the Skylab planned flight activities,

The total impulse remaining for this third manned mission is présented
in Figure 64. A detailed listing of TACS usage for this time period is
presented in Appendix B,

The system pressure decay and GN, masé are shown. in Figures 65 and 66.
The thrust level variation for this phasé of the mission is shown in
Figure 67 and i3 compared to the thrust level stored in the ATMDC. The
variation in MIB (Figure 68) also shows the times at which the ATMDC
command pulse width was updatéd. The MIB was maintained at approximately
22 N-gec (5 lbf-gec), The MIB and full-on firing histories are shown in
Figures 69 and 70,

The average bulk gas temperature and the beta angle variation are
ghown in Figures 71 and 72, The module inlet gas temperatures and the
average modulé inlet temperature are presentéed in Fagure 73,
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APPENDIX A,
THRUSTER ATTITUDE CONTROL SYSTEM
COMPONENT OPERATING CHARACTERISTICS
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APPROVAL

SKYLAB THRUSTER ATTITUDE..
CONTROL SYSTEM

Glenn E, Wilmer, Jr,

The information in this report has been reéviewed for security
classification, Réview of any information concerning Department of
Defarise or Atomic Energy Commission programs has been made by the MSFC
Security Classification Officer,. This report, in its entirety, has been
detérmined to be unclassified.

This document has also been reviewed and approved for. technical
accuracy.
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